a solvent molecule coordinated in the trans position to the oxo group. Previous work²⁰ indicates that NO₃⁻ must coordinate in a position cls to the oxo group for reduction by molybdenum(V) oxo complexes. Models also indicate that the deprotonated ligand could coordinate with solvent or an open position cls to oxo only with considerable distortion.

- (20) R. D. Taylor, P. G. Todd, N. D. Chasteen, and J. T. Spence, *Inorg. Chem.*, 18, 44 (1979).
- (21) J. T. Spence, M. Minelil, and C. A. Rice In "Molybdenum Chemistry of Blological Significance", W. E. Newton and S. Otsuka, Eds., Plenum Press, New York, 1980, p 263.
- (22) Reduction of MoO₂LH₂ by ligand (possibly catalyzed by SO₃²⁻) as occurs with MoO₂ (ethylcysteine)₂,²⁵ is ruled out since quantitative formation of MoOL⁻⁻ is observed. Because of the difficulty in detecting small amounts of SO₄²⁻⁻ in the presence of a large excess of SO₃²⁻, SO₄²⁻⁻ has not yet been identified as a product.
- (23) If reaction 1 is an equilibrium with K ≥ 100, the MoO₂LH₂/MoOL⁻ reversible potential ≥ -0.84 V vs. SCE.
- (24) Reported values for xanthine oxidase are -0.355 and -0.355 V⁵ and +0.220 and +0.180 V for nitrate reductase: S. P. Vincent, *Biochem. J.*, **177**, 757 (1979).
- (25) C. D. Garner, R. Durrant, and F. E. Mabbs, Inorg. Chim. Acta, 24, L29 (1977).
- (26) NOTE ADDED IN PROOF. A five-line shift of 2.14 × 10⁻⁴ cm⁻¹ due to two equivalent ¹⁴N nuclei is observed for [Et₄N][MoOL] In DMF at -30 °C. This is similar to ¹⁴N splitting reported in the nitrogen deprotonated Mo(abt)₃⁻⁻ complex, ¹⁴ and is further evidence in support of the proposed structures.

J. T. Spence,* M. Minelli

Department of Chemistry and Biochemistry Utah State University, Logan, Utah 84322

P. Kroneck

Fakultät für Biologie, University of Konstanz D-7750 Konstanz, West Germany Received January 22, 1980

Metal Clusters. 25.¹ A Uniquely Bonded C-H Group and Reactivity of a Low-Coordinate Carbidic Carbon Atom

Sir:

In seeking¹⁻⁴ metal clusters containing carbidic carbon atoms of low coordination number and high reactivity,⁵ we have prepared a unique cluster containing a methylidyne group bonded to the iron cluster atoms, namely $HFe_4(\eta^2-CH)$ - $(CO)_{12}$. Deprotonation of the cluster with base successively yielded $[HFe_4(\mu_4-C)(CO)_{12}^{-1}]$ and $[Fe_4(\mu_4-C)(CO)_{12}^{2-1}]$ clusters, the first clusters to contain four-coordinate carbidic carbon atoms.² Oxidation of $Fe_4C(CO)_{12}^{2-1}$ in the presence of hydrogen to form $HFe_4(\eta^2-CH)(CO)_{12}$ has established a unique cluster carbidic carbon atom reactivity that is formally analogous to that of carbide carbon atoms at a metal surface.⁵

Treatment of $[(C_2H_5)_4N^+]_2[Fe_5C(CO)_{14}^{2-}]$ with HCl quantitatively yielded $[(C_2H_5)_4N^+]$ [HFe₅C(CO)_{14}^-]. Prolonged reaction of the hydride derivative with HCl gave HFe₄(CH)(CO)_{12} in 95-100% yield:^{6,7}

$$HFe_5C(CO)_{14}^- + 3HCl \rightarrow HFe_4(CH)(CO)_{12} + 2CO + FeCl_2 + Cl^- + H_2 \quad (1)$$

Cluster stability to electron impact was high; mass spectral analysis showed stepwise loss of CO to HFe₄(CH)(CO)⁺ and then Fe₄C⁺ formation. Only terminal M-CO bonding was evident in the cluster IR spectrum. Two types of hydrogen atom environments, one a CH and the other a hydridic hydrogen atom, were established by NMR spectroscopy: there were two resonances of equal intensity and of doublet form due to HH coupling (0.9 Hz); the CH doublet at the unusual position of -1.31 ppm showed ¹³C satellites ($J_{H^{13}C} = 103.4$), and the Fe_x-H doublet was at -27.95 ppm.⁸ Consistently, the ¹³C CH resonance was a doublet of doublets ($J_{H^{13}C} = 103.4$ and $J_{H(Fe)^{13}C} = 6.4$ Hz) at 335 ppm at 35 to -50 °C. Both proton resonances were sharp up to 65 °C, but hydrogen exchange, which is probably intramolecular, does occur between the two

sites as shown by spin saturation experiments.⁹ Hydrogen exchange between CH and FeH sites in our cluster is a dynamic phenomenon expected for most hydrocarbon fragments bound to a metal surface. In addition, H-D exchange between both hydrogen sites and D₂O was established by the dimunition of ¹H NMR intensities on addition of D₂O to a cluster solution and intensity restoration on H₂O addition. For the case of intermediate H-D exchange, the C-H ¹H NMR intensity was more sharply reduced than that for Fe_x-H resonance. This is an equilibrium isotope effect, with a ratio of HFe₄(CD)(CO)₁₂ to DFe₄(CH)(CO)₁₂ of 1.73:1 at 35 °C;¹⁰ a similar ratio of 1.74:1 has been reported¹¹ for a methyl(hydrido)osmium cluster which showed H exchange between C-H and Os_x-H sites.

These spectroscopic data define a cluster with a metal hydride and a methylidyne, CH, hydrogen atom. A three-center C-H-Fe bond is clearly indicated by the NMR chemical shift for the CH hydrogen atom.^{11,12} Thus, HFe₄(η^2 -CH)(CO)₁₂ is a 62-electron four-atom cluster and should have a butterfly array of iron atoms. Our proposed structure¹³ based on the spectroscopic data is shown in **1**. Originally, we thought that

the hydride might be displaced toward the $Fe^{B_{2}}Fe^{A'}$ face, but crystallographic studies¹⁴ have now established the structure as shown in 1 with the hydride bridging between the two basal iron atoms. Structure 1 has seven different CO environments, but HFe₄(η^2 -CH)(CO)₁₂ is highly fluxional and only four ¹³C CO resonances, of 4:2:4:2 intensity ratios, were present in the -90 °C ¹³C NMR spectrum and these reduced to one sharp and two broad resonances of relative 4:6:2 intensities at 20 °C. The chemical exchange data and the ¹³C and ¹H DNMR studies establish several dynamic processes to be operative in the cluster: H site (CH) exchange, CO site exchange, and hydrogen exchange between CH and Fe₂H sites. CH-hydrogen site exchange comprises an apparent shift of the bridging CH hydrogen atom from one apical iron atom (Fe^A) to the other ($Fe^{A'}$), an exchange that is fast on the NMR time scale even at -90 °C.

All previously known¹⁵ methyne cluster complexes achieved coordination saturation with simple M-C bonding as in (μ_3 -HC)Co₃(CO)₉ and (μ_3 -HC)Os₃H₃(CO)₉. Our new η^2 -CH cluster derivative represents another possible mode of C-H bonding at a surface, one more probable than a η^1 -CH interaction for the typically coordinately unsaturated, electropositive metal surface atoms.¹⁶

The hydrogen atoms in HFe₄(η^2 -CH)(CO)₁₂ were removed by triethylamine to give first [HFe₄(μ_4 -C)(CO)₁₂⁻] and then [Fe₄(μ_4 -C)(CO)₁₂²⁻] which were isolated as PPN⁺ salts.¹⁷ From +35 to -90 °C, the dianion exhibited two carbonyl ¹³C resonances of equal intensity at 220.8 and 222.8 ppm consistent with our proposed structure **2** assuming that intramolecular CO exchange localized on single iron sites is fast at these temperatures.¹⁸ The monoanion had a 20 °C single broad high-field hydride resonance at -26.8 ppm ($\omega_{1/2}$ = 30 Hz) which sharpened on temperature decrease (δ -26.9 ppm and $\omega_{1/2}$ = 3 Hz at -70 °C); this carbide cluster has structural

Figure 1. This cyclic scheme summarizes the demonstrated relationships among the Fe₄C and Fe₅C carbonyl systems.

form 2 with a hydride bridging between the two basal, Fe^{B} , iron atoms. There were similarities between the carbonyl ¹³C

DNMR spectra of the monoanion with those of HFe₄(η^2 - $CH)(CO)_{12}$; carbonyl site exchange barriers increase in the series $[Fe_4C(CO)_{12}^{2-}] < [HFe_4C(CO)_{12}^{-}] < HFe_4(\eta^2 - \eta^2)$ CH)(CO)₁₂. Intermolecular exchange of H between $HFe_4(CH)(CO)_{12}$ and $HFe_4C(CO)_{12}^-$ was not observable on the NMR time scale. Single crystals of salts of the two cluster carbide anions are under crystallographic study.

Protonation of the exposed, four-coordinate carbide carbon atom in [HFe₄(μ_4 -C)(CO)₁₂⁻] is fast and represents the first protonation of an exposed carbide carbon atom in a metal cluster. The five-coordinate carbon atom in $Fe_5(\mu_5-C)(CO)_{15}$ is not protonated by strong acids, although the generation of $HFe_4(\eta^2-CH)(CO)_{12}$ by reaction of $[Fe_5C(CO)_{14}^{2-}]$ with HCl must involve at some step transfer of hydrogen to the carbide carbon atom. In addition, $[Fe_4C(CO)_{12}^{2-}]$ undergoes framework expansion when allowed to react with mononuclear transition metal complexes. The previously¹ reported $[RhFe_4C(CO)_{14}^{-}]$ was obtained from the reaction of the dianion with $[Rh(CO)_2Cl]_2$, and a new octahedral carbide, $[Mo_2Fe_4C(CO)_{18}^{2-}]$, was formed with $Mo(CO)_3(THF)_3$. Cyclic interconversions in the Fe₄C and Fe₅C systems are summarized in Figure 1.

Oxidation of $Fe_4C(CO)_{12}^{2-}$ with AgBF₄ in the presence of H₂ and of D₂, respectively, yielded HFe₄(CH)(CO)₁₂ and $DFe_4(CD)(CO)_{12}$ implicating oxidative addition of hydrogen to a coordinately unsaturated $Fe_4C(CO)_{12}$ intermediate. This is the first facile H₂ reduction of a carbide carbon atom in metal cluster chemistry and is a formal analogue of a step proposed^{3,5} in Fischer-Tropsch reactions.

Acknowledgments. Support of this research by the National Science Foundation is gratefully acknowledged as is the assistance of Mr. Robert R. Burch in the NMR studies.

References and Notes

- (1)Preceeding paper in this series: M. Tachikawa and E. L. Muettertles, J. Am. Chem. Soc., 102, 1725 (1980).
- (2) M. Tachikawa and E. L. Muetterties, Prog. Inorg. Chem., in press (a comprehensive review of metal carbide clusters). (3) E. L. Muetterties and J. Stein, *Chem. Rev.*, **79**, **47**9 (1979).
- E. L. Muetterties, J. Organomet. Chem., in press. Carbide-like carbon atoms are postulated to be intermediates in Fischer-(5)
- Tropsch reactions effected by metal surfaces like Fe, Ru, and Co.3 The surface carbides, which are likely to have relatively low metal atom

coordination numbers, react with hydrogen at 25 °C to form hydrocarbons. See discussion and references to original literature in ref 3.

- (6) A Schlenk flask (500 mL) which contained a suspension of $[(C_2H_5)_4N]_2[Fe_5C(CO)_{14}]$ (500 mg) in 30 mL of toluene was filled with hydrogen chloride to give a rapid formation of an oily layer of $[(C_2H_5)_4N][HFe_5C(CO)_1_4]$. Vigorous stirring was maintained for 24 h. A white solid separated. The solution phase was evaporated to give black, crystalline HFe₄(η^2 -CH)(CO)₁₂ (236 mg, 98% yleld).
- (7)This cluster after recrystallization from hexane analyzed for [HFe₄(n^2 . CH)(CO)12]. Anal. Calcd for C13H2Fe4O12: C, 27.22; H, 0.18; Fe, 38.95. Found: C, 27.38; H, 0.36; Fe, 39.2. Mass spectrum (crystals from hexane):
 574 (parent), 546 (P - CO), 518 (P - 2CO), 490 (P - 3CO), 462 (P - 4CO),
 434 (P - 5CO), 406 (P - 6CO), 378 (P - 7CO), 350 (P - 8CO), 322 (P - 9CO),
 294 (P - 10CO), 266 (P - 11CO), 236 (P - 12CO - 2H). IR (hexane) solution): vco 2099 (vw), 2053 (vs), 2036 (s), 2031 (m), 2015 (sh), 1987
- ¹³C satellites were observed for a saturated dichloromethane solution of (8) the cluster. When the cluster was prepared from ¹³CO-enriched Fe₅C(CO)₁₄²⁻, there was no enhancement of the CH ¹³C satellite intensity establishing that the CH carbon atom is not derived from a carbonyl carbon in the synthesis step. (9) Irradiation of the $\delta - 27.95$ resonance at 35 and 65 °C resulted in an in-
- tensity from the -1.31 resonance that was 65 and 6%, respectively, relative to the intensity in the absence of the irradiation.
- (10) Integration of the C-H and Fe_x-H resonances for a mixture of HFe₄(CH)-(CO)₁₂. HDFe₃C(CO)₁₂, and DFe₄(CD)(CO)₁₂ (ratios determined by mass spectrometry) yielded a ratio of HFe₄(CD)(CO)₁₂ to DFe₄(CH)(CO)₁₂ of 1.73 at 35 °C.
- (11) (a) R. B. Calvert and J. R. Shapley, J. Am. Chem. Soc., 100, 7726 (1978); (b) R. B. Calvert, J. R. Shapley, A. J. Schultz, J. M. Williams, S. L. Sulb, and G. D. Stucky, *Ibid.*, **100**, 6240 (1978).
 J. M. Williams, R. K. Brown, A. J. Schultz, G. D. Stucky, and S. D. Ittel, *J.*
- Am. Chem. Soc., 100, 7407 (1978).
- (13)An isoelectronic and isostructural cluster is HFe₄(η^2 -CO)(CO)₁₂⁻; cf. M. Manassero, M. Sansoni, and G. Longoni, J. Chem. Soc., Chem. Commun., 919 (1976).
- (14) M. A. Beno, J. M. Williams, M. Tachikawa, and E. L. Muetterties, J. Am.
- Chem. Soc., following paper in this issue.
 (15) (a) D. Seyferth, Adv. Organomet. Chem., 14, 97 (1976); (b) R. B. Calvert and J. R. Shapley, J. Am. Chem. Soc., 99, 5225 (1977).
- (16) EHMO calculations for CH on a Ni(111) surface suggest that the system energy is reduced in going from a μ_3 -CH binding with the CH vector normal to the surface to a η^2 -CH binding with both the carbon and the hydrogen atoms bound to surface nickel atoms (R. M. Gavin and E. L. Muetterties. unpublished calculations). In addition, J. E. Demuth and H. Ibach, Surf. Sci., 78, L238 (1978), propose on the basis of spectroscopic data that chemisorbed CH on Ni(111) does not have the CH vector normal to the surface
- (17) (a) Anal. Calcd for (PPN⁺)₂[Fe₄C(CO)₁₂²⁻]: C, 61.92; H, 3.67; N, 1.70. Found: C, 61.12; H, 3.74; N, 1.70. IR (dichloromethane): *p*_{CO} 2003 (w), 1968 (s), 1942 (vs), 1912 (m). ¹³C NMR (CH₂Cl₂, 20 °C, 45.3 MHz): 220.8 (6) and 222.8 (6) ppm for carbonyl carbon atoms. (b) Anal. Calcd for [PPN⁺]-[HFe₄C(CO)₁₂⁻]: C, 52.97; H, 2.81; N, 1.26. Found: C, 52.91; H, 2.89; N, 1.27. IR (CH₂Cl₂): ν_{CO} 2010 (s, sh), 2005 (vs), 1987 (s), 1978 (m, sh), 1927 (w). ¹H NMR (CD₂Cl₂, 20 °C, 180 MHz): hydride at -26.8 ppm (ω_{1/2} = 30.3) Hz)
- (18) Low barriers to CO site exchange localized on single metal sites is common in metal clusters: E. Band and E. L. Muetterties, Chem. Rev., 78, 639 (1978).

M. Tachikawa, E. L. Muetterties*

Department of Chemistry, University of California Berkeley, California 94720 Received February 1, 1980

Fischer-Tropsch Chemistry: Structure of a Seminal η^2 -CH Cluster Derivative, HFe₄(η^2 -CH)(CO)₁₂

Sir:

We have completed a high-precision low-temperature [-100](3) °C] X-ray crystal structure study of a Fe₄ "butterfly" cluster containing an unusual η^2 -CH ligand. This cluster,¹ $HFe_4(\eta^2-CH)(CO)_{12}$, 1, occupies a central role in transformations that document the proposed² high reactivity of lowcoordinate carbon (carbide) ligands in clusters and that formally may relate to intermediates³ in some metal surface catalyzed Fischer-Tropsch reactions.4-6

After collection of an extensive low temperature data set⁷ for crystals of 1 recrystallized from hexane, the structure was solved using MULTAN.⁸ There is a butterfly array of four iron atoms, each with three terminal carbonyl ligands, with the carbidic carbon atom nestled near the center of the top of the "wings" of the Fe4 array where it forms a strong C-H-Fe interaction as depicted in Figure 1.9 The most striking feature